|
Eilenberg's inequality is a mathematical inequality for Lipschitz-continuous functions. Let ''ƒ'' : ''X'' → ''Y'' be a Lipschitz-continuous function between separable metric spaces whose Lipschitz constant is denoted by Lip ''ƒ''. Then, Eilenberg's inequality states that : for any ''A'' ⊂ ''X'' and all 0 ≤ ''n'' ≤ ''m'', where * the asterisk denotes the upper Lebesgue integral, * ''v''''n'' is the volume of the unit ball in R''n'', * ''H''''n'' is the ''n''-dimensional Hausdorff measure. ==References== * Yu. D. Burago and V. A. Zalgaller, ''Geometric inequalities''. Translated from the Russian by A. B. Sosinskiĭ. Springer-Verlag, Berlin, 1988. ISBN 3-540-13615-0. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Eilenberg's inequality」の詳細全文を読む スポンサード リンク
|